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Discussions on multi-sensor Hidden
Markov Model for human motion

identification

Nan Yu1

Abstract. Based on acceleration sensor and gyroscope data fusion, a human motion iden-
tification method was put forward for tackling the problem of large error of monitoring human
motion with single sensor. Measurement accuracy of attitude angle was greatly improved by re-
vising attitude angle collected by acceleration sensor with human motion information outputted
by gyroscope and achieving information fusion for multi-sensor using Kalman filtering algorithm.
Hidden Markov Model (HMM) for identifying human motion was built based on characteristics of
human attitude angle. Experiment showed that to identify physical exercise was more accurate
with multi-sensor HMM based-method than with single sensor.
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1. Introduction

A human motion model for physical education was made up of head, the upper
part of the body, the upper part of big arm, the middle and lower parts of big
arm, forearm, hip, thigh, shank and feet. A new type of jointing element was used
among those parts. This mode was used demonstrate various exercises for students
or athletes to imitate and practice [1]. Therefore, recognition algorithm of HMM
was adopted to analyze angular information and extract characteristics of several
basic movements. Human movement mode was analyzed and identified in real time
with the matching input sequence and HMM model.

2. Literature review

Two basic approaches for identifying movement were video image-based monitor-
ing method and wearable device-based monitoring method. To collect and analyze
depth image features, video inductor was introduced to video image-based monitor-
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ing method whose typical image processing method was based on kinect [2]. This
method was featured limited monitored area, needing specific light for monitored
area and unguaranteed privacy security for users. Mature technology-MEMS sensor
was adopted by wearable device-based monitoring method, such as attitude detecting
system made up of accelerometer, gyroscope and magnetometer were used to iden-
tify human motion information [3]. This method was featured guaranteed privacy
security for users. This device was of low price and suitable for widely promotion.

Generally, acceleration sensor was used in motion detection technology because
of its accurate identification in uniform variable speed [4]. However, most physical
exercise was variable acceleration motion. Thus, there was large identification error
because of gravitational acceleration and accelerated speed. Therefore, a wearable
device was designed to collect data using acceleration sensor and gyroscope. More
accurate and reliable identification information was obtained by fusing multi-source
information with Kalman filtering. HMM recognition algorithm was used to analyze
attitude angle and extract characteristic value of motor. Common human movement
mode was analyzed and identified in real time by the matching input sequence and
HMM model.

3. Research method

3.1. Data collection and fusion

A space coordinate system should be built before collecting human motion in-
formation. Performance of different body parts was very different during the same
exercise because human motion was complex. Motion of the upper trunk (body
parts above waist and under the neck) was relatively stable in daily activities while
in walk, stand and fall down, its motion was evident. Thus, sensor was put on the
upper trunk to collect data.

Human trunk coordinate system oxyz (see figure 1) was built taking place of
sensor as original point. Ground coordinate system was taken as fixed Cartesian
coordinate system OXYZ. When human body stood still, human trunk coordinate
system oxyz was parallel to ground coordinate system OXYZ.

Fig. 1. Space coordinate system for human motion



DISCUSSIONS ON MULTI-SENSOR 165

3.2. Algorithm for information collection and fusion

Tri-axial digital acceleration sensor MMA7660 was used to collect human gravita-
tional acceleration. MEMS tri-axial angular velocity sensor (gyroscope) L3G4200D
was used to collect human attitude angle. Sampling frequency was set as 50Hz.
The collected acceleration data and gyroscope data was transferred by information
acquisition module to PC to fuse. Angular value collected by system was revised in
real time by data that collected by acceleration sensor, thus deviation of attitude
angle measurement caused by single sensor was addressed [5].

Given G vector value measured by acceleration sensor when exercising. Accel-
eration magnitudes of G in three coordinate axes X, Y and Z are Gx, Gy and Gz.
Acceleration measurement should be converted to angular value and acceleration
magnitude should be converted to angular value, which, in principle, is shown in
Fig. 2.

Fig. 2. Principle for measuring angular value with acceleration sensor

The given acceleration sensor was in idle state:

G2 = G2
x +G2

y +G2
z (1)

First, normalize vector G.

Fx =
Gx

|G|
, Fy =

Gy

|G|
, Fz =

Gz

|G|
(2)

The vector value F a in the direction of normalized gravity is computed using the
formula

|F a| =
√
F 2
x + F 2

y + F 2
z = 1 . (3)

Included angles θa−x, θa−y and θa−z between the gravity vector and directions
of three coordinate axes were calculated with normalized vector value. Method to



166 NAN YU

calculate the included angles was shown as follows:

θa−x = arcsin

 |Fy|√
F 2
y + F 2

z

 , θa−y = arcsin

(
|Fx|√
F 2
x + F 2

z

)
,

θa−z = arcsin

 |Fy|√
F 2
x + F 2

y

 . (4)

Given rotation angular speed measured by rotating angular velocity sensor around
coordinate axes X, Y and Z of components ωx, ωy and ωz. The measured angu-
lar velocity should be converted to corresponding rotation angle. According to the
collected rotation angular velocity at present and system sampling period, rotation
angle of gyroscope rotating around the direction of the three axes was calculated as

θgy−x =

∫
ωx dt, θgy−y =

∫
ωy dt, θgy−z =

∫
ωz dt . (5)

In the above formula, θgy−x, θgy−y and θgy−z denote corresponding rotation
angles of axes X, Y and Z after calculation, respectively. Symbol dt denotes the
sampling period of gyroscope data.

Kalman filter was used to fuse information collected by acceleration sensor and
gyroscope. Regard acceleration sensor-measured value as predicted value and gyroscope-
measured value as observed value. Predicted value revised by observed value was
taken as the output value. Drift error b of the gyroscope estimated by the accelera-
tion sensor was taken as the state vector, thus, the state equation and observation
equation of system were shown as follows

[
θ̇

ḃ

]
=

(
0 −1
0 0

)[
θ
b

]
+

[
1
0

]
ωgy +

[
ωg

0

]

θa =
[

1 0
] [ ω̇

b

]
+ ωa

. (6)

In formula (6), ωgy denotes the angular velocity representing the output by gy-
roscope with fixed deviation. θa denotes the angular value of acceleration sensor
after processing. Symbols ωg and ωa denote measurement noise of gyroscope and
acceleration sensor. These two measurement noises are mutual independent. For
the convenience of calculation, those two measurement noises are assumed to be
normally distributed white noises. Given measurement noise of system ω(k) and
sampling period is Ts. Thus, the state equation and measurement equation of sys-
tem are as follows:
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
X(k) =

[
1 Ts
0 1

]
X(k − 1) +

[
Ts
0

]
ωgy(k − 1) +

[
ωg(k)Ts

0

]
Vi =

[
1 0

]
X(k) + ωa(k)

, (7)

Kg(k) =
P (k |k − 1)HT

HP (k |k − 1)HT + Γ (k)
. (8)

In formula (8),Kg(k) denote the Kalman increment at time k. Symbol P (k |k − 1)
denotes the covariance of system at time k − 1. Symbol H denotes output matrix
of measuring system and HT denotes its transpose. Γ(k) denotes the covariance of
measurement noise. Thus, the fused attitude angle is given as follows:

θ(k) = θgy(k) +Kg(k)(θgy(k)− θa(k)) . (9)

In the above formula, θgy(k) and θa(k) denote the output attitude angle of gy-
roscope and acceleration sensor at time k, respectively. Symbol θ(k) denotes the
output attitude angle after fusion at time k and the optimal value output by the
Kalman filtering at time k. The covariance of the system state at time k was calcu-
lated using the formula

P (k |k ) = (1−Kg(k)H)P (k |k − 1) . (10)

Formulae (6)–(10) represent the whole computing process of Kalman filtering.
Formulae (8) and (10) were used to guarantee recursiveness and continuity of the
filtering algorithm. When received output angular velocity of gyroscope at k + 1th
time, the system would go back to formula (6). Thus, the system entered filtering
algorithm at time k + 1.

The collected multi-sensor data after fusion was more close to true value because
measuring angle error of acceleration sensor was carried out. In order to explain
effect of fusion algorithm, comparison charts of measurement attitude angle before
and after fusion in X direction are shown in Figs. 3 and 4.

The attitude angle curve of stable walk is shown in Fig. 3. It can be seen from this
figure that there is a small attitude angle change before and after data fusion. Those
two curves were of high coincidence rate and data before fusion was of relatively small
curve interference because measuring error of sensor was small when doing slow and
stable exercise. Figure 4 shows attitude angle curve of fast walk, a strenuous exercise.
It can be seen that the measured angles before and after data fusion were very
different. When doing slow and stable exercise, angular value measured by sensor
was of small interference and high accuracy. When doing strenuous exercise, the
measured angular value was inaccurate because acceleration sensor was influenced
by gravity and zero drift of gyroscope. Thus, multi-sensor data fusion was introduced
to calculate the optimal estimated value in direction of motion vector, which method
greatly lowered gravity vector displacement and zero drift those occurred because of
interference of external force [6]. Therefore, smoothing and effective attitude angle
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was obtained.

Fig. 3. Angle comparison of stable walk in X axis direction (a: before fusion, b:
after fusion)

Fig. 4. Angle comparison of fast walk in X axis direction (a: before fusion, b:
after fusion)

3.3. HMM model-based identification algorithm for specific
motion

Markov chain is a Markov process with discrete parameters of time and state and
a specific situation in Markov random process. Markov chain can be described as
follows:

P (Xm+k = qm+k/Xm = qm, Xm−1 = qm−1, · · · , X1 =
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= q1) = P (Xm+k = qm+k/Xm = qm) , (11)

where q1, q2, · · · , qm, qm+k ∈ (θ1, θ2, · · · θN ).
Matrix of transition probability is

A =

 a11 · · · a1N
...

. . .
...

aN1 · · · aNN


and

0 ≤ aij ≤ 1,

N∑
a=1

aij = 1 .

Several parameters below are used to describe a Hidden Markov Model (HMM):
A: A = a(ij)N×N is the state probability transfer matrix. B: B = bj(k)N×N ,

j = 1, 2, · · · , N , k = 1, 2, · · · ,M is the probability matrix forthe observed value. N:
N is the state number of Markov chain in mode. Finally, π: π = (π1, · · · , πN ) is the
state vector of the initial probability.

Given a HMM was λ = (π,A,B). In other words, HMM was made up of two
parts. One Markov chain was made up of π and A, producing output state se-
quence. Another one was a random process described by B, producing observed
value sequence.

Standard Baum-Welch algorithm [7] was adopted to estimate HMM parameter.
This algorithm was featured by a high timeliness while computation complexity was
low. Updating weight with recursive computation effectively reduced its complex-
ity, thus the model parameter that explained sample sequence more accurately was
obtained. The computational process of this algorithm is shown below.

Defined variable δt(i, j) that corresponds to observed sequence O. Given Si and
Sj as the states at time t and time t+ 1 respectively. Thus,

δt(i, j) = P (qt = Si, qt+1 = Sj |o1, o2, · · · , oT ) =

=
αt(i)aijbj(ot+1)βt+1(j)∑

i

∑
j αt(i)aijbj(ot+1)βt+1(j)

. (12)

Defined variable ηt(i). Given ηt(i) denoted probability of observed sequence being
in state Si at time t. Thus,

ηt(i) = P (qt = Si |o1, o2, · · · , oT ) =
αt(i)βt(i)∑
i αt(i)βt+1(i)

. (13)

It can be seen from formulae (12) and (13) that

aij = P (S |S ) =

∑
δt(i, j)∑
ηt(i)

,
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bj(k) = P (O |S ) =

∑
t,k ηt(i)∑
ηt(i)

, πi = P (S) = ηt(i) . (14)

In this formula, aij , bj(k) and πi are HMM parameters after reevaluation, thus
new model was obtained.

Viterbi algorithm was based on dynamic programming. The optimal status
switch was obtained with the observed output sequence. Mode was identified by
Viterbi algorithm which was used to calculate likelihood. The computational pro-
cess of Viterbi algorithm follows:

σt(i) = maxP (q1 = Si |o1 ) = πibi(o1), 1 ≤ i ≤ N , (15)

Wi = 0 . (16)

Formula (16) represents the the initial condition for the system. After forward
recursion, the below formula can be obtained

σt(j) = maxP (q1, q2, · · · , qt) = Sj , o1, o2, · · · , ot),

= max[aijbj(ot) maxP (q1, q2, · · · , qt−1 = Si, o1, o2, · · · , ot−1)],

= max[aijbj(ot)σt(i)], 1 ≤ i, j ≤ N, 2 ≤ t ≤ T.

(17)

Formula (17) denotes the maximum value of σt(j) at time t in state i. Given,

P = maxσt(j), qT = argmax[σt(i)] . (18)

It was obtained with recursive operation qt+1 ← qt, t = 1, 2, · · · , T − 1. The
motion model corresponding to the maximum probability value is taken as identifi-
cation result, which means that the state motion at present is identified. Flow chart
for identifying human motion model is shown in Fig. 5.

4. Experiment and analysis

Based on characteristics of several basic movements, Weizmann data base and
ten common movements in this data base including bend, jack, jump, pjump, run,
side, skip, walk, wave1 and wave2 were compared to motion data obtained in exper-
iment in order to compute identification rate. Model was built based on regarding
those ten motion states as target object for identification. Ten athletes, ranging
in age from 22 years old to 30 years old with normal height and weight and no
limb illness, was chosen as monitoring objects. Two experiments (5 people in each
experimental group) were done and its results was observed and compared. Single
acceleration sensor was adopted by the first experimental group to collect human
motion information for identifying motion mode. Multi-sensor data after fusion was
used by the second experimental group to identify motion mode. Experimenters
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Fig. 5. Flow chart for identifying motion mode

should wear sensor across the upper limb and exercise randomly for one hour with-
out external disturbance. Data collected by information collection module of sensor
was transferred to upper computer through wireless communication module. Then,
data was analyzed and motion mode was identified. Results of the experiment are
shown in Table 1.

Table 1. Thermophysical properties of regular fluid and nanoparticles

State of motion Identification rate of
the first experimental
group (%)

Identification rate of
the second experimen-
tal group (%)

Bend 74.5 83.1

Jack 88.3 96.2

Jump 86.4 92.2

Pjump 81.3 88.4

Run 82.7 95.3

Side 75.3 82.7

Skip 86.9 91.1

Walk 83.5 92.3

Wave1 75.9 85.4

Wave2 79.1 89.7

It can be seen from Table 1 that the identification rate of the second experimental
group was much higher than that of the first experimental group. Experiments
verified that identifying human motion was more accurate with information fusion
than with single sensor.
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5. Conclusion

Acceleration sensor and gyroscope was adopted to collect changing information of
attitude angle in different motion. Multi-sensor data was fused to extract character-
istics of angular value. HMM motion mode was established to identify motion mode
according to fusion characteristics. Experiment verified that identifying basic move-
ments was more accurate with multi-sensor HMM based-method. Further study will
be focused on classification and identification of relatively complex movements.
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